

0

Closed Loop Design, LLC

support@cld-llc.com

USB Human Interface Device (HID) Library
for Analog Devices ADSP-BF70x

User’s Guide Revision 2.00

1

Table of Contents
Disclaimer ... 2

Introduction ... 2

USB Background .. 2

CLD BF70x HID Library USB Enumeration Flow Chart .. 4

CLD BF70x HID Library Interrupt OUT Flow Chart .. 6

CLD BF70x HID Library Interrupt IN Flow Chart .. 7

HID Background ... 8

HID Interrupt IN Endpoint .. 9

HID Control Endpoint Requests ... 9

Optional HID Interrupt OUT Endpoint ... 13

Dependencies .. 14

Memory Footprint ... 14

CLD BF70x HID Library Scope and Intended Use .. 14

CLD HID Mouse Example v2.0 Description .. 14

CLD BF70x HID Library API .. 15

cld_bf70x_hid_lib_init .. 15

cld_bf70x_hid_lib_main ... 24

cld_bf70x_hid_lib_transmit_interrupt_in_data... 25

cld_bf70x_hid_lib_resume_paused_interrupt_out_transfer.. 26

cld_lib_usb_connect ... 27

cld_lib_usb_disconnect ... 27

cld_time_125us_tick ... 28

cld_usb_isr_callback ... 28

cld_console_tx_isr_callback ... 29

cld_console_rx_isr_callback ... 29

cld_time_get .. 30

cld_time_passed_ms ... 30

cld_time_get_125us .. 31

cld_time_passed_125us .. 31

cld_console ... 32

cld_lib_status_decode ... 33

Using the ADSP-BF707 Ez-Board ... 34

2

Connections: ... 34

Note about using UART0 and the FTDI USB to Serial Converter ... 34

Adding the CLD BF70x HID Library to an Existing CrossCore Embedded Studio Project 35

User Firmware Code Snippets .. 37

main.c .. 37

user_hid.c .. 38

Disclaimer
This software is supplied "AS IS" without any warranties, express, implied or statutory, including but not

limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed

Loop Design LLC extends you a royalty-free right to reproduce and distribute executable files created

using this software for use on Analog Devices Blackfin family processors only. Nothing else gives you

the right to use this software.

Introduction

The Closed Loop Design (CLD) HID library creates a simplified interface for developing a Human

Interface Device (HID) using the Analog Devices ADSP-BF707 EZ-Board. The CLD BF70x HID library

also includes support for a serial console and timer functions which facilitates creating timed events

quickly and easily. The library's BF707 application interface is comprised of parameters used to

customize the library's functionality as well as callback functions used to notify the User application of

events. These parameters and functions are described in greater detail in the CLD BF70x HID Library

API section of this document.

USB Background

The following is a very basic overview of some of the USB concepts which are necessary to use the CLD

BF70x HID Library. However, it is still recommended that developers have at least a basic understanding

of the USB 2.0 protocol as well as the HID 1.11 Protocol. The following are some resources to refer to

when working with USB:

• The USB 2.0 Specification: http://www.usb.org/developers/docs/usb20_docs/

• The USB HID Class specification v1.11:http://www.usb.org/developers/hidpage/

• USB in a Nutshell: A free online wiki that explains USB concepts.

http://www.beyondlogic.org/usbnutshell/usb1.shtml

• "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, so all USB terminology is from the

Host's perspective. For example, an 'IN' transfer is when data is sent from a Device to the Host, and an

'OUT' transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework devices must implement in order to work correctly.

This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB

'Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests used by a USB Host

to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB

http://www.usb.org/developers/docs/usb20_docs/
http://www.usb.org/developers/hidpage/
http://www.beyondlogic.org/usbnutshell/usb1.shtml

3

Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB

Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is

called the USB Enumeration. The CLD BF70x HID Library includes support for the USB standard

requests and USB Enumeration using some of the parameters specified by the User application when

initializing the library. These parameters are discussed in the cld_bf70x_hid_lib_init section of this

document. The CLD BF70x HID Library facilitates USB enumeration and is Chapter 9 compliant

without User Application intervention as shown in the flow chart below. If you'd like additional

information on USB Chapter 9 functionality or USB Enumeration please refer to one of the USB

resources listed above.

4

CLD BF70x HID Library USB Enumeration Flow Chart

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Cable Connected or USB Bus Reset

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and

Product ID specified by the User Firmware

Set USB Address

USB Host Event

Set Blackfin’s USB Address

Get Configuration Descriptor Request

Configuration Descriptor retuned by the Device

Set Configuration

(CLD Bulk Library has 1 configuration)

Configures the Device

(Bulk IN and Bulk OUT endpoints configured and enabled)

Request String Descriptors

Return USB String Descriptors defined by the User

Firmware

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and

Product ID specified by the User Firmware

U
S

B
 E

n
u

m
e

ra
ti
o

n

All USB data is transferred using Endpoints which act as a source or sink for data based on the endpoint's

direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique

characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and

Isochronous. Data transmitted over USB is broken up into blocks of data called packets. For each

endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also

vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information

about the max packet size supported by the four endpoint types.

5

The CLD BF70x HID Library uses Control and Interrupt endpoints, so these endpoint types will be

discussed in more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status

transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage and Status

Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where

any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity to

report if an error was detected during the transfer. All USB Devices are required to include a default

Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all

the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD BF70x HID Library

Endpoint 0 is used for USB Chapter 9 requests, as well as HID Get/Set requests. These HID requests are

discussed in more detail in the HID Background section of this document.

Interrupt Endpoints are used to transfer blocks of data where data integrity, and deterministic timing is

required. Deterministic timing is achieved by allowing the Device to specify a requested interval used by

the Host to initiate USB transfers, which gives the Device a guaranteed maximum time between

opportunities to transfer data. Interrupt Endpoints are particularly useful when the Device needs to report

to the Host when a change is detected without having to wait for the Host to ask for the information. An

example of how this is used with HID is a USB Mouse. When a User moves the mouse or presses a

button the mouse reports this change to the Host using the HID Interrupt IN endpoint. This is more

efficient then requiring the host to repeatedly send Control Endpoint requests asking if the mouse inputs

have changed.

The flow charts below give an overview of how the CLD BF70x HID Library and the User firmware

interact to process Interrupt IN and Interrupt OUT transfers. Additionally, the User firmware code

snippets included at the end of this document provide a basic framework for implementing the HID

firmware using the CLD BF70x HID Library.

6

CLD BF70x HID Library Interrupt OUT Flow Chart

Interrupt OUT packet

Call User specified interrupt_out_data_received function

with p_transfer_params->num_bytes = number of received

Interrupt OUT bytes

Set the p_transfer_params parameters to describe the

expected Interrupt OUT transfer

• num_bytes = the size of the Interrupt OUT transfer

• p_data_buffer =address of buffer to store num_bytes

of data

• usb_out_transfer_complete = function to call when the

requested number of bytes is received

• transfer_aborted_callback = function to call if the

transfer is terminated.

• transfer_timeout_ms = number of milliseconds to wait

for the transfer to complete before detecting a timeout

(0 = timeout disabled).

Return CLD_USB_TRANSFER_ACCEPT

Unload the Interrupt OUT packet from the Blackfin’s

endpoint FIFO to p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes

received?

Call User specified

p_transfer_params->fp_usb_out_transfer_complete

function

Exit Interrupt OUT Rx ISR, and Wait for next Interrupt Out

packet Rx Interrupt

Interrupt Out Rx Interrupt

Return CLD_USB_DATA_GOOD if the received Interrupt

OUT data is valid, or CLD_USB_DATA_BAD_STALL to

stall the Interrupt OUT endpoint.

Exit Interrupt OUT Rx ISR

Yes

No

USB/External Event

CLD HID Library Firmware

User Firmware

USB Host Event

7

CLD BF70x HID Library Interrupt IN Flow Chart

Load the next the Interrupt IN packet into the Blackfin’s

endpoint FIFO
Requested p_transfer_prams->num_bytes

transmitted?

Call the User specified fp_usb_in_transfer_complete

function

Create a CLD_USB_Transfer_Params variable (called

transfer_params in this flow chart)

transfer_params parameters to describe the requested

Interrupt IN transfer

• num_bytes = the size of the Interrupt IN transfer

• p_data_buffer = address of buffer that has num_bytes

of data to send to the Host

• usb_in_transfer_complete = function called when the

requested number of bytes has been transmitted

• transfer_aborted_callback = function to call if the

transfer is terminated.

• transfer_timeout_ms = number of milliseconds to wait

for the transfer to complete before detecting a timeout

(0 = timeout disabled).

Call cld_hid_lib_transmit_interrupt_in_data passing a

pointer to transfer_params

Initialize the first packet of the Interrupt IN transfer using the

User specified transfer_params.

Interrupt IN token

Interrupt IN Interrupt

Exit Interrupt IN Interrupt and wait for next Interrupt IN

Token

No

Yes

Wait for the USB Host to issue a USB IN Token on the

Interrupt IN endpoint

USB/External Event

CLD HID Library Firmware

User Firmware

USB Host Event

Exit Interrupt IN Interrupt

usb_in_transfer_complete

8

HID Background

The USB Human Interface Device (HID) protocol is a USB Standard Class protocol released by the USB

IF committee. The HID protocol was created to provide a standardized way USB devices that interface

with a human could be controlled over USB. The HID protocol covers a wide range of uses including,

but not limited to: keyboards, joysticks, button panels, touch screens, and alphanumeric displays.

In the HID protocol all data sent between the Host and Device is transferred using data structures called

Reports, and each Report can include a variety data elements of various types and sizes. For example: a

USB mouse has a single Report which it uses to report the mouse's position and button state. The format

of this report is shown in the C structure below:

typedef struct

{

 unsigned char button; /* Mouse button state */

 signed char x; /* X position */

 signed char y; /* Y position */

} Mouse_Input_Report;

However, the Device needs to describe the structure and intended use of its Reports the Host. The HID

protocol accomplishes this using the HID Report Descriptor which includes the information required by

the Host to process the Device's Reports. The HID Report Descriptor uses identifiers defined in the HID

protocol to describe the various elements which make up a Report, as well as how multiple data elements

are organized in the Reports. The Report Descriptor also specifies if the Report is an INPUT, OUTPUT or

FEATURE. An INPUT Report can only be sent from the Device to the Host. An OUTPUT Report can

only be sent from the Host to the Device. While a FEATURE Report can be sent both directions (Device-

to-Host and Host-to-Device). Below is an example HID Report Descriptor that describes the

Mouse_Input_Report structure defined previously. In this example HID Report Descriptor the entries

highlighted in blue define the unsigned char button element as an 8-bit bit-field where the least significant

3-bits are the three mouse buttons, and the remaining 5-bits are a constant. The entries highlighted in

green define the signed char x and signed char y elements of the report. For additional information about

what the various HID Report Descriptor identifiers are and how they are used please refer to the USB

HID 1.11 specification.

static const unsigned char usb_hid_mouse_report_descriptor[] =

{

 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */

 0x09, 0x02, /* USAGE (Mouse) */

 0xa1, 0x01, /* COLLECTION (Application) */

 0x09, 0x01, /* USAGE (Pointer) */

 0xa1, 0x00, /* COLLECTION (Physical) */

 0x05, 0x09, /* USAGE_PAGE (Button) */

 0x19, 0x01, /* USAGE_MINIMUM (Button 1) */

 0x29, 0x03, /* USAGE_MAXIMUM (Button 3) */

 0x15, 0x00, /* LOGICAL_MINIMUM (0) */

 0x25, 0x01, /* LOGICAL_MAXIMUM (1) */

 0x95, 0x03, /* REPORT_COUNT (3) */

 0x75, 0x01, /* REPORT_SIZE (1) */

 0x81, 0x02, /* INPUT (Data,Var,Abs) */

 0x95, 0x01, /* REPORT_COUNT (1) */

 0x75, 0x05, /* REPORT_SIZE (5) */

9

 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */

 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */

 0x09, 0x30, /* USAGE (X) */

 0x09, 0x31, /* USAGE (Y) */

 0x15, 0x81, /* LOGICAL_MINIMUM (-127) */

 0x25, 0x7f, /* LOGICAL_MAXIMUM (127) */

 0x75, 0x08, /* REPORT_SIZE (8) */

 0x95, 0x02, /* REPORT_COUNT (2) */

 0x81, 0x06, /* INPUT (Data,Var,Rel) */

 0xc0, /* END_COLLECTION */

 0xc0 /* END_COLLECTION */

};

HID Interrupt IN Endpoint

The HID protocol requires all Human Interface Devices include a Interrupt IN endpoint which is used to

report when a INPUT or FEATURE report value changes. For the above mouse example this means the

Mouse_Input_Report structure will be sent to the Host over the Interrupt IN endpoint anytime the the

button_state, x or y values change.

HID Control Endpoint Requests

The HID protocol defines several Control Endpoint requests that a HID peripheral is required to support

as well as some optional Control Endpoint requests. The Control Endpoint requests used by the CLD

BF70x HID Library are explained in the following sections, and include flow charts showing how the

CLD BF70x HID Library and the User firmware interact to the Control Endpoint requests.

Additionally, the User firmware code snippets included at the end of this document provide a basic

framework for implementing the HID control requests using the CLD BF70x HID Library.

10

Set Report (required)

Set Report is a Control OUT request and is used by the Host to send data to the device using one of the

Device's OUTPUT or FEATURE Reports

CLD BF70x HID Library Set Report Flow Chart

Set Report Setup Packet

Call User specified set_report_received function with

p_transfer_params->num_bytes = setup packet wLength

and report_id = received HID report ID

Set the p_transfer_params parameters to describe the

expected Set Report transfer

• p_data_buffer =address of buffer to store num_bytes

of data for the specified Report ID.

• usb_out_transfer_complete = function to call when the

requested number of bytes is received

• transfer_aborted_callback = function to call if the

transfer is terminated.

Return CLD_USB_TRANSFER_ACCEPT

Unload the Control OUT packet from the Blackfin’s

endpoint FIFO to p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes

received?

Call User specified

p_transfer_params->usb_out_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control Out

packet Rx Interrupt

Endpoint 0 Interrupt

Return CLD_USB_DATA_GOOD if the received Set Report

data is valid, or CLD_USB_DATA_BAD_STALL to stall the

Status Stage of the Control OUT transfer.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Host Event

Set Report Data Stage

Set Report Status Stage

11

Get Report (optional)

Get Report is a Control IN request used by the Host to request the current state of one of the Device's

INPUT or FEATURE Reports.

CLD BF70x HID Library Get Report Flow Chart

Get Report Setup Packet

Call User specified get_report_received function with

p_transfer_params->num_bytes = setup packet wLength

and report_id = received HID report ID

Set the p_transfer_params parameters to transmit the

requested Report ID

• num_bytes = size of the requested HID Report.

• p_data_buffer = address of buffer to source

num_bytes of the specified Report ID data.

• usb_in_transfer_complete = function to call when the

Get Report data has been transmitted.

• transfer_aborted_callback = function to call if the

transfer is terminated.

Return CLD_USB_TRANSFER_ACCEPT

Load the Control IN packet into the Blackfin’s endpoint 0

FIFO from p_transfer_params->p_data_buffer

Get Report data bytes transmitted?

Call User specified

p_transfer_params->usb_in_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control IN

packet Tx Interrupt

Endpoint 0 Interrupt

Perform any required Get Report transfer complete

functions.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Host Event

Get Report Data Stage

Get Report Status Stage

Set the number of Control IN bytes to the minimum of the

Setup Packet wLength and

p_transfer_params->num_bytes.

12

Set Idle (optional)

The Set Idle Control OUT request is used by the Host to specify the amount of time before the device will

resend the current state of specified Report over the Interrupt IN endpoint when the reported data hasn't

changed. The Set Idle duration is specified in 4 millisecond increments, where setting the duration to 0

tells the Device to only send the specified Report when it's data changes.

For example if the Host uses the Set Idle command and specifies a duration of 500ms the device is

required to send the specified Report as soon as possible when the Report data changes, and every 500ms

while the Report data remains constant.

CLD BF70x HID Library Set Idle Flow Chart

Set Idle Setup Packet

Call User specified set_idle function with report_id =

received HID report ID and duration = Host requested

duration (in 4ms increments).

Set the idle duration for the requested Report ID.

Return CLD_USB_DATA_GOOD if the request is valid.

Return CLD_USB_DATA_BAD_STALL if the request is

invalid

Endpoint 0 Interrupt

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Host Event

Set Idle Status Stage

CLD_USB_DATA_GOOD?

Ack the Status Stage

Stall the Status Stage

Yes

No

Exit Endpoint 0 ISR

13

Get Idle (optional)

The Get Idle Control IN request is used by the Host to get the current idle duration of the Report specified

in the Get Idle request.

CLD BF70x HID Library Get Idle Flow Chart

Get Idle Setup Packet

Call User specified get_idle function with report_id =

received HID report ID.

Set p_duration to the duration of the specified Report ID

Return CLD_USB_DATA_GOOD if the request is valid.

Return CLD_USB_DATA_BAD_STALL if the request is

invalid

Endpoint 0 Interrupt

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Host Event

Get Idle Data Stage

CLD_USB_DATA_GOOD?

Load the specified Duration into the Blackfin’s Endpoint 0

FIFO

Stall the Get Idle Request

Yes

No

Exit Endpoint 0 ISR

Get Idle Status Stage

Exit Endpoint 0 ISR

Optional HID Interrupt OUT Endpoint

The USB HID Protocol includes an optional Interrupt OUT endpoint. When a Human Interface Device

includes the Interrupt OUT endpoint the Host will use this endpoint to transmit OUTPUT Report data

instead of using the Set Report Request.

14

Dependencies

In order to function properly the CLD BF70x HID Library requires the following Blackfin resources:

• 24Mhz clock input connected to the Blackfin USB0_CLKIN pin.

• Optionally the CLD BF70x HID Library can use one of the Blackfin UARTs to implement a

serial console interface.

• The User firmware is responsible for setting up the Blackfin clocks, as well as enabling the

Blackfin's System Event Controller (SEC) and configuring SEC Core Interface (SCI) interrupts to

be sent to the Blackfin core.

Memory Footprint

The CLD BF70x HID Library approximate memory footprint is as follows:

Code memory: 26304 bytes

Data memory: 4404 bytes

Total: 30708 bytes or 29.98k

Heap memory: 1152 bytes (only malloc'ed if optional cld_console is enabled)

Note: The CLD BF70x HID Library is currently optimized for speed (not space).

CLD BF70x HID Library Scope and Intended Use

The CLD BF70x HID Library implements a USB Human Interface Device Class device, as well as

providing time measurements and optional bi-directional UART console functionality. The CLD BF70x

HID Library is designed to be added to an existing User project, and as such only includes the

functionality needed to implement the above mentioned USB, timer and UART console features. All

other aspects of Blackfin processor configuration must be implemented by the User code.

CLD HID Mouse Example v2.0 Description

The cld_hid_mouse_example_v2_0 project provided with the CLD BF70x HID Library implements a

basic HID Mouse using the ADSP-BF707 EZ-Board. This example uses the EZ-Board's push buttons to

generate mouse events that get reported to the Host using the CLD BF70x HID Library. This example is

not indented to be a used as a complete stand alone project. Instead, this project only includes the User

functionality required to create a basic USB mouse, and it is up to the User to include their own custom

system initialization and any extra functionality they require.

15

CLD BF70x HID Library API

The following CLD library API descriptions include callback functions that are called by the library

based on USB events. The following color code is used to identify if the callback function is called from

the USB interrupt service routine, or from mainline. The callback functions called from the USB

interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_bf70x_hid_lib_init

CLD_RV cld_bf70x_hid_lib_init (CLD_BF70x_HID_Lib_Init_Params *

cld_hid_lib_params)

Initialize the CLD BF70x HID Library.

Arguments

cld_hid_lib_params Pointer to a CLD_BF70x_HID_Lib_Init_Params

structure that has been initialized with the User

Application specific data.

Return Value

This function returns the CLD_RV type which represents the status of the CLD BF70x HID initialization

process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD_FAIL There was a problem initializing the library
CLD_ONGOING The library initialization is being processed

Details

The cld_bf70x_hid_lib_init function is called as part of the device initialization and must be repeatedly

called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the library

will output an error message identifying the cause of the failure using the cld_console UART if enabled

by the User application. Once the library has been initialized successfully the main program loop can

start.

The CLD_BF70x_HID_Lib_Init_Params structure is described below:

typedef struct

{

 CLD_Uart_Num uart_num;

 unsigned long uart_baud;

 unsigned long sclk0;

 void (*fp_console_rx_byte) (unsigned char byte);

 unsigned short vendor_id;

 unsigned short product_id;

16

 unsigned short report_descriptor_size

 unsigned char * p_report_descriptor

 CLD_HID_Endpoint_Params * p_interrupt_in_endpoint_params;

 CLD_HID_Endpoint_Params * p_interrupt_out_endpoint_params;

 CLD_USB_Transfer_Request_Return_Type (*fp_interrupt_out_data_received)

 (CLD_USB_Transfer_Params * p_transfer_data);

 unsigned char usb_bus_max_power;

 unsigned short device_descriptor_bcdDevice;

 const char * p_usb_string_manufacturer;

 const char * p_usb_string_product;

 const char * p_usb_string_serial_number;

 const char * p_usb_string_configuration;

 const char * p_usb_string_interface;

 unsigned short usb_string_language_id;

 CLD_USB_Transfer_Request_Return_Type (*fp_set_report_received) (unsigned

 char report_id, CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Transfer_Request_Return_Type (*fp_get_report_received) (unsigned

 char report_id, CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Data_Received_Return_Type (*fp_set_idle) (unsigned char

 report_id, unsigned char duration);

 CLD_USB_Data_Received_Return_Type (*fp_get_idle) (unsigned char

 report_id, unsigned char * p_duration);

 void (*fp_cld_usb_event_callback) (CLD_USB_Event event);

 void (*fp_cld_lib_status) (unsigned short status_code,

 void * p_additional_data,

 unsigned short additional_data_size);

} CLD_BF70x_HID_Lib_Init_Params;

A description of the CLD_BF70x_HID_Lib_Init_Params structure elements is included below:

Structure Element Description

uart_num Identifies which of the ADSP-BF707 UARTs should be used by the

CLD BF70x HID Library to implement the cld_console (refer to the

cld_console API description for additional information). The valid

uart_num values are listed below:

CLD_UART_0

CLD_UART_1

CLD_UART_DISABLE

If uart_num is set to CLD_UART_DISABLE the CLD BF70x HID

Library will not use a UART, and the cld_console functionality is

disabled.

uart_baud Sets the desired UART baud rate used for the cld_console.

The remaining cld_console UART parameters are as follows:

17

Number of data bits: 8

Number of stop bits: 1

No Parity

No Hardware Flow Control

sclk0 Used to tell the CLD BF70x HID Library the frequency of the

ADSP_BF707 SCLK0 clock.

fp_console_rx_byte Pointer to the function that is called when a byte is received by the

cld_console UART. This function has a single parameter ('byte')

which is the value received by the UART.

Note: Set to NULL if not required by application

vendor_id The 16-bit USB vendor ID returned to the USB Host in the USB

Device Descriptor.

USB Vendor ID's are assigned by the USB-IF and can be purchased

through their website (www.usb.org).

product_id The 16-bit product ID returned to the USB Host in the USB Device

Descriptor.

report_descriptor_size The size of the User defined HID Report Descriptor.

p_report_descriptor Pointer to the User defined HID Report Descriptor.

p_interrupt_in_endpoint_params

Pointer to a CLD_HID_Endpoint_Params structure that describes

how the Interrupt IN endpoint should be configured. The

CLD_HID_Endpoint_Params structure contains the following

elements:

Structure Element Description

endpoint_num Sets the USB endpoint number

of the Interrupt endpoint. The

endpoint number must be

within the following range:

1 ≤ endpoint_num ≤ 12. Any

other endpoint number will

result in the

cld_bf70x_hid_lib_init

function returning CLD_FAIL

max_packet_size_full_speed Sets the Interrupt endpoint's

max packet size when

operating at Full Speed. The

maximum max packet size is

64 bytes.

polling_interval_full_speed

Full-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

max_packet_size_high_speed Sets the Interrupt endpoint's

max packet size when

operating at High Speed. The

maximum max packet size

1024 bytes.

polling_interval_high_speed

High-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

18

p_interrupt_out_endpoint_params

Pointer to a CLD_HID_Endpoint_Params structure that describes

how the Interrupt Out endpoint should be configured. Refer to the

p_interrupt_in_endpoint_params description for information about

the CLD_HID_Endpoint_Params structure.

Set to CLD_NULL if the optional Interrupt OUT endpoint isn't

used.

fp_interrupt_out_data_received Pointer to the function that is called when the Interrupt OUT

endpoint receives data. This function takes a pointer to the

CLD_USB_Transfer_Params structure ('p_transfer_data')as a

parameter.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Interrupt OUT transfer:

Structure Element Description

num_bytes The number of bytes to transfer

to the p_data_buffer before

calling the

usb_out_transfer_complete

callback function.

When the

fp_interrupt_out_data_received

function is called num_bytes is

set the number of bytes in the

current Interrupt OUT packet. If

the Interrupt OUT total transfer

size is known num_bytes can be

set to the total transfer size, and

the CLD BF70x HID Library

will complete the entire transfer

without calling

fp_interrupt_out_data_received

again. If num_bytes isn't

modified the

fp_interrupt_out_data_received

function will be called for each

Interrupt OUT packet.

p_data_buffer Pointer to the data buffer to

store the received Interrupt OUT

data. The size of the buffer

should be greater than or equal

to the value in num_bytes.

fp_usb_out_transfer_compele

te

Function called when

num_bytes of data has been

transferred to the p_data_buffer

memory.

fp_transfer_aborted_callback Function called if there is a

problem transferring the

19

requested Interrupt OUT data.

transfer_timeout_ms

Interrupt OUT transfer timeout

in milliseconds. If the Interrupt

out transfer takes longer then

this timeout the transfer is

aborted and the

transfer_aborted_callback is

called.

Setting the timeout to 0 disables

the timeout

The interrupt_out_data_received function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x HID

Library that the Interrupt OUT

data should be accepted using

the p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

HID Library pause the current

transfer. This causes the

Interrupt OUT endpoint to be

nak'ed until the transfer is

resumed by calling

cld_bf70x_hid_lib_resume_

paused_interrupt_out_transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

HID Library discard the

number of bytes specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Interrupt

OUT data from the USB Host

but discards the data. This is

similar to the concepts of

frame dropping in audio/video

applications.
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

HID Library that there is an

error and the Interrupt OUT

endpoint should be stalled.

usb_bus_max_power USB Configuration Descriptor bMaxPower value (0 = self

powered). Refer to the USB 2.0 protocol section 9.6.3.

device_descriptor_bcd_device USB Device Descriptor bcdDevice value.

Refer to the USB 2.0 protocol section 9.6.1.

p_usb_string_manufacturer Pointer to the null-terminated string. This string is used by the CLD

BF70x HID Library to generate the Manufacturer USB String

Descriptor. If the Manufacturer String Descriptor is not used set

p_usb_string_manufacturer to NULL.

20

p_usb_string_product Pointer to the null-terminated string. This string is used by the CLD

BF70x HID Library to generate the Product USB String Descriptor.

If the Product String Descriptor is not used set

p_usb_string_product to NULL.

p_usb_string_serial_number Pointer to the null-terminated string. This string is used by the CLD

BF70x HID Library to generate the Serial Number USB String

Descriptor. If the Serial Number String Descriptor is not used set

p_usb_string_serial_number to NULL.

p_usb_string_configuration Pointer to the null-terminated string. This string is used by the CLD

BF70x HID Library to generate the Configuration USB String

Descriptor. If the Configuration String Descriptor is not used set

p_usb_string_configuration to NULL.

p_usb_string_interface Pointer to the null-terminated string. This string is used by the CLD

BF70x HID Library to generate the Interface 0 USB String

Descriptor. If the Product String Descriptor is not used set

p_usb_string_interface to NULL.

usb_string_language_id 16-bit USB String Descriptor Language ID Code as defined in the

USB Language Identifiers (LANGIDs) document

(www.usb.org/developers/docs/USB_LANGIDs.pdf).

0x0409 = English (United States)

fp_set_report_received Pointer to the function that is called when a HID Set Report request

is received. This function takes the requests Report ID and a

pointer to the CLD_USB_Transfer_Params structure

('p_transfer_data') as its parameters.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Report transfer:

Structure Element Description

num_bytes The number of bytes from the

Setup Packet wLength field,

which is the number of bytes

that will be transferred to

p_data_buffer before calling

the

fp_usb_out_transfer_complete

callback function.

p_data_buffer Pointer to the data buffer to

store the Set Report data. The

size of the buffer should be

greater than or equal to the

value in num_bytes.

fp_usb_out_transfer_compelete Function called when

num_bytes of data has been

written to the p_data_buffer

memory.

fp_transfer_aborted_callback Function called if there is a

problem Set Report data.

transfer_timeout_ms Not used.

21

The set_report_received function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x HID

Library that the Set Report

data should be accepted using

the p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

HID Library pause the Set

Report transfer. This causes

the Control Endpoint to be

nak'ed until the transfer is

resumed by calling

cld_bf70x_hid_lib_resume_

paused_control_transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

HID Library discard the

number of bytes specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Set Report

data from the USB Host but

discards the data. This is

similar to the concepts of

frame dropping in audio/video

applications.
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

HID Library that there is an

error and the Set Report

request should be stalled.

fp_get_report_received Pointer to the function that is called when a HID Get Report request

is received. This function takes the requests Report ID and a

pointer to the CLD_USB_Transfer_Params structure

('p_transfer_data') as its parameters.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Get Report request:

Structure Element Description

num_bytes The number of bytes from the

Setup Packet wLength field.

The User firmware sets

num_bytes to the size of the

requested Report ID.

p_data_buffer Pointer to the data buffer to

source the Get Report data.

The size of the buffer should be

greater than or equal to the

value in num_bytes.

22

fp_usb_in_transfer_compelete Function called when Get

Report data has been

transferred to the Host.

fp_transfer_aborted_callback Function called if there is a

problem transferring the Get

Report data.

transfer_timeout_ms Not used

The get_report_received function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x HID

Library that the Get Report

data should be transferred

using the p_transfer_data

values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

HID Library pause the Get

Report transfer. This causes

the Control Endpoint to be

nak'ed until the transfer is

resumed by calling

cld_bf70x_hid_lib_resume_

paused_control_transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

HID Library to return a zero

length packet in response to

the Get Report request.
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

HID Library that there is an

error and the Get Report

request should be stalled.

fp_set_idle Pointer to the function that is called when a HID Set Idle request is

received. This function takes the request's Report ID and requested

duration as its parameters. The duration is specified in 4ms

increments.

The set_idle function returns the

CLD_USB_Data_Received_Return_Type, which has the following

values:

Return Value Description
CLD_USB_DATA_GOOD Notifies the CLD BF70x HID

Library that the Set Idle

request is valid.
CLD_USB_DATA_BAD_STALL

Notifies the CLD BF70x HID

Library that the Set Idle

request is invalid, and should

be stalled.

fp_get_idle Pointer to the function that is called when a HID Get Idle request is

23

received. This function takes the request's Report ID a pointer,

p_duration as its parameters. p_duration should be set to the

requested Report ID's duration in 4ms increments.

The get_idle function returns the

CLD_USB_Data_Received_Return_Type, which has the following

values:

Return Value Description
CLD_USB_DATA_GOOD Notifies the CLD BF70x HID

Library that the Get Idle

request is valid and the

p_duration value should be

returned to the Host.
CLD_USB_DATA_BAD_STALL

Notifies the CLD BF70x HID

Library that the Get Idle

request is invalid, and should

be stalled.

fp_cld_usb_event_callback Function that is called when one of the following USB events

occurs. This function has a single CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or

mainline context depending on which USB event was detected. The

CLD_USB_Event values in the table below are highlighted to show

the context the callback is called for each event.

The CLD_USB_Event has the following values:

Return Value Description
CLD_USB_CABLE_CONNECTED

USB Cable Connected.

CLD_USB_CABLE_DISCONNECTED USB Cable

Disconnected
CLD_USB_ENUMERATED_CONFIGURED_HS USB device enumerated

at High-Speed (USB

Configuration set to a

non-zero value)
CLD_USB_ENUMERATED_CONFIGURED_FS USB device enumerated

at Full-Speed (USB

Configuration set to a

non-zero value)
CLD_USB_UN_CONFIGURED USB Configuration set

to 0
CLD_USB_BUS_RESET USB Bus reset received
CLD_USB_BUS_SUSPEND USB Suspend detected
CLD_USB_BUS_RESUME USB Resume detected

Note: Set to CLD_NULL if not required by application

fp_cld_lib_status Pointer to the function that is called when the CLD library has a

status to report. This function has the following parameters:

Parameter Description

24

status_code 16-bit status code. If the

most significant bit is a '1' the

status being reported is an

Error.

p_additional_data Pointer to additional data

included with the status.

additional_data_size The number of bytes in the

specified additional data.

If the User plans on processing outside of the fp_cld_lib_status

function they will need to copy the additional data to a User buffer.

cld_bf70x_hid_lib_main

void cld_bf70x_hid_lib_main (void)

CLD BF70x HID Library mainline function

Arguments

None

Return Value

None.

Details

The cld_bf70x_hid_lib_main function is the CLD BF70x HID Library mainline function which must be

called in every iteration of the main program loop in order for the library to function properly.

25

cld_bf70x_hid_lib_transmit_interrupt_in_data

CLD_USB_Data_Transmit_Return_Type

cld_bf70x_hid_lib_transmit_interrupt_in_data (CLD_USB_Transfer_Params *

p_transfer_data)

CLD BF70x HID Library function used to send data over the Interrupt IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN

transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Interrupt IN

transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN

endpoint is busy, or if the p_transfer_data->

data_buffer is set to NULL

Details

The cld_bf70x_hid_lib_transmit_interrupt_in_data function transmits the data specified by the

p_transfer_data parameter to the USB Host using the Device's Interrupt IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*usb_out_transfer_complete)(void);

 void (*usb_in_transfer_complete) (void);

 }callback;

 void (*transfer_aborted_callback) (void);

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

specified number of bytes have been transmitted the

usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

fp_usb_out_transfer_complete Not Used for Interrupt IN transfers

26

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB host. This function pointer can be set to NULL if the User

application doesn't want to be notified when the data has been

transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the

USB Host. This function can be set to NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Interrupt OUT transfer timeout in milliseconds. If the Interrupt out

transfer takes longer then this timeout the transfer is aborted and the

transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_bf70x_hid_lib_resume_paused_interrupt_out_transfer

void cld_bf70x_hid_lib_resume_paused_interrupt_out_transfer (void)

CLD BF70x HID Library function used to resume a paused Interrupt OUT transfer.

Arguments

None

Return Value

None.

Details

The cld_bf70x_hid_lib_resume_paused_interrupt_out_transfer function is used to resume a Interrupt

OUT transfer that was paused by the fp_interrupt_out_data_received function returning

CLD_USB_TRANSFER_PAUSE. When called the

cld_bf70x_hid_lib_resume_paused_interrupt_out_transfer function will call the User application's

fp_interrupt_out_data_received function passing the CLD_USB_Transfer_Params of the

original paused transfer. The fp_interrupt_out_data_received function can then chose to accept,

discard, or stall the interrupt out request.

27

cld_lib_usb_connect

void cld_lib_usb_connect (void)

CLD BF70x HID Library function used to connect to the USB Host.

Arguments

None

Return Value

None.

Details

The cld_lib_usb_connect function is called after the CLD BF70x HID Library has been initialized to

connect the USB device to the Host.

cld_lib_usb_disconnect

void cld_lib_usb_disconnect (void)

CLD BF70x HID Library function used to disconnect from the USB Host.

Arguments

None

Return Value

None.

Details

The cld_lib_usb_disconnect function is called after the CLD BF70x HID Library has been initialized to

disconnect the USB device to the Host.

28

cld_time_125us_tick

void cld_time_125us_tick (void)

CLD library timer function that should be called once per 125 microseconds.

Arguments

None

Return Value

None.

Details

This function should be called once every 125 microseconds in order to the CLD to processed periodic

events.

cld_usb_isr_callback

void cld_usb_isr_callback (void)

CLD library USB interrupt service routines

Arguments

None

Return Value

None.

Details

These USB ISR functions should be called from the corresponding USB Port Interrupt Service Routine as

shown in the CLD provided example projects.

29

cld_console_tx_isr_callback

void cld_console_tx_isr_callback (void)

CLD library console UART transmit interrupt service routines

Arguments

None

Return Value

None.

Details

These transmit ISR functions should be called from the corresponding UART transmit Interrupt Service

Routine as shown in the CLD provided example projects.

cld_console_rx_isr_callback

void cld_console_rx_isr_callback (void)

CLD library console UART receive interrupt service routines

Arguments

None

Return Value

None.

Details

These receive ISR functions should be called from the corresponding UART receive Interrupt Service

Routine as shown in the CLD provided example projects.

30

cld_time_get

CLD_Time cld_time_get(void)

CLD BF70x HID Library function used to get the current CLD time.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

cld_time_passed_ms

CLD_Time cld_time_passed_ms(CLD_Time time)

CLD BF70x HID Library function used to measure the amount of time that has passed.

Arguments

time A CLD_Time value returned by a cld_time_get

function call.

Return Value

The number of milliseconds that have passed since the cld_time_get function call that returned the

CLD_Time value passed to the cld_time_passed_ms function.

Details

The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

If a one millisecond resolution is granular enough for your needs, you can have a virtually unlimited

number of timed events when using cld_time_get and cld_time_passed_ms.

31

cld_time_get_125us

CLD_Time cld_time_get_125us(void)

CLD library function used to get the current CLD time in 125 microsecond increments.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get_125us function is used in conjunction with the cld_time_passed_125us function to

measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us

function calls in 125 microsecond increments.

cld_time_passed_125us

CLD_Time cld_time_passed_125us(CLD_Time time)

CLD library function used to measure the amount of time that has passed in 125 microsecond increments.

Arguments

time A CLD_Time value returned by a

cld_time_get_125us function call.

Return Value

The number of 125microsecond increments that have passed since the cld_time_get_125us function call

that returned the CLD_Time value passed to the cld_time_passed_125us function.

Details

The cld_time_passed_125us function is used in conjunction with the cld_time_get_125us function to

measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us

function calls in 125 microsecond increments.

32

cld_console

CLD_RV cld_console(CLD_CONSOLE_COLOR foreground_color, CLD_CONSOLE_COLOR

 background_color, const char *fmt, ...)

CLD Library function that outputs a User defined message using the UART specified in the

CLD_BF70x_HID_Lib_Init_Params structure.

Arguments

foreground_color The CLD_CONSOLE_COLOR used for the

console text.

CLD_CONSOLE_BLACK

CLD_CONSOLE_RED

CLD_CONSOLE_GREEN

CLD_CONSOLE_YELLOW

CLD_CONSOLE_BLUE

CLD_CONSOLE_PURPLE

CLD_CONSOLE_CYAN

CLD_CONSOLE_WHITE

background_color The CLD_CONSOLE_COLOR used for the

console background.

CLD_CONSOLE_BLACK

CLD_CONSOLE_RED

CLD_CONSOLE_GREEN

CLD_CONSOLE_YELLOW

CLD_CONSOLE_BLUE

CLD_CONSOLE_PURPLE

CLD_CONSOLE_CYAN

CLD_CONSOLE_WHITE

The foreground and background colors allow the

User to generate various color combinations like

the ones shown below:

fmt The User defined ASCII message that uses the

same format specifies as the printf function.
... Optional list of additional arguments

33

Return Value

This function returns whether or not the specified message has been added to the cld_console transmit

buffer.
CLD_SUCCESS The message was added successfully.
CLD_FAIL The message was not added, so the message will

not be transmitted. This will occur if the CLD

Console is disabled, or if the message will not fit

into the transmit buffer.

Details

cld_console is similar in format to printf, and also natively supports setting a foreground and background

color. A feature of cld_console is that it is non-blocking, i.e. long messages can be queued and the

function call returns prior to the message draining from the buffer. Overly long messages are truncated to

128 bytes, and up to 1024 characters can be in escrow to be transmitted. Received characters can be

processed by supplying a console_rx_byte function in the library init structure.

The following will output 'The quick brown fox' on a black background with green text:

 cld_console(CLD_CONSOLE_GREEN, CLD_CONSOLE_BLACK, "The quick brown %s\n\r", "fox");

cld_lib_status_decode

char * cld_lib_status_decode (unsigned short status_cod,

 void * p_additional_data,

 unsigned short additional_data_size)

CLD Library function that returns a NULL terminated string describing the status passed to the function.

Arguments

status_code 16-bit status code returned by the CLD library.

Note: If the most significant bit is a '1' the status is

an error.
p_additional_data Pointer to the additional data returned by the CLD

library (if any).
additional_data_size Size of the additional data returned by the CLD

library.

Return Value

This function returns a decoded Null terminated ASCII string.

Details

The cld_lib_status_decode function can be used to generate an ASCII string which describes the CLD

library status passed to the function. The resulting string can be used by the User to determine the

meaning of the status codes returned by the CLD library.

34

Using the ADSP-BF707 Ez-Board

Connections:

Blackfin USB 0 used

by the CLD Library

USB-to-Serial port connected

to Blackfin UART 0

UART 0 can be used for the

CLD Console port

5V Power

Connector

Note about using UART0 and the FTDI USB to Serial Converter

On the ADSP-BF707 Ez-Board the Blackfin's UART0 serial port is connected to a FTDI FT232RQ USB-

to-Serial converter. By default the UART 0 signals are connected to the FTDI chip. However, the demo

program shipped on the Ez-Board disables the UART0 to FTDI connection. If the FTDI converter is used

for the CLD BF70x HID Library console change the boot selection switch (located next to the power

connector) so the demo program doesn't boot. Once this is done the FTDI USB-to-Serial converter can be

used with the CLD BF70x HID Library console connected to UART0.

35

Adding the CLD BF70x HID Library to an Existing CrossCore Embedded

Studio Project

In order to include the CLD BF70x HID Library in a CrossCore Embedded Studio (CCES) project you

must configure the project linker settings so it can locate the library. The following steps outline how this

is done.

1. Copy the cld_bf70x_hid_lib.h and cld_bf70x_hid_lib.dlb files to the project's src directory.

2. Open the project in CrossCore Embedded Studio.

3. Right click the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects" window make sure C/C++ Perspective is active. If the

C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select

Window → Show View → C/C++ Projects.

4. You should now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build → Settings page and select the CrossCore Blackfin Linker General

page. The CLD BF70x HID Library needs to be included in the project's 'Additional libraries and

object files' as shown in the diagram below (circled in blue). This lets the linker know where the

cld_bf70x_hid_lib.dlb file is located.

36

5. The 'Additional libraries and object files' setting needs to be set for all configurations (Debug,

Release, etc). This can be done individually for each configuration, or all at once by selecting the

[All Configurations] option as shown in the previous figure (circled in orange).

37

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.

For a functional User firmware example that uses the CLD BF70x HID Library please refer to the CLD

HID Mouse Example v2.0 project included with the CLD BF70x HID Library. The CLD HID Mouse

Example v2.0 project implements a basic USB Mouse using the Human Interface Device protocol.

main.c

void main(void)

{

 Main_States main_state = MAIN_STATE_SYSTEM_INIT;

 while (1)

 {

 switch (main_state)

 {

 case MAIN_STATE_SYSTEM_INIT:

 /* Enable and Configure the SEC. */

 /* sec_gctl - unlock the global lock */

 pADI_SEC0->GCTL &= ~BITM_SEC_GCTL_LOCK;

 /* sec_gctl - enable the SEC in */

 pADI_SEC0->GCTL |= BITM_SEC_GCTL_EN;

 /* sec_cctl[n] - unlock */

 pADI_SEC0->CB.CCTL &= ~BITM_SEC_CCTL_LOCK;

 /* sec_cctl[n] - reset sci to default */

 pADI_SEC0->CB.CCTL |= BITM_SEC_CCTL_RESET;

 /* sec_cctl[n] - enable interrupt to be sent to core */

 pADI_SEC0->CB.CCTL = BITM_SEC_CCTL_EN;

 pADI_PORTA->DIR_SET = (3 << 0);

 pADI_PORTB->DIR_SET = (1 << 1);

 main_state = MAIN_STATE_USER_INIT;

 break;

 case MAIN_STATE_USER_INIT:

 rv = user_hid_init();

 if (rv == USER_HID_INIT_SUCCESS)

 {

 main_state = MAIN_STATE_RUN;

 }

 else if (rv == USER_HID_INIT_FAILED)

 {

 main_state = MAIN_STATE_ERROR;

 }

 break;

 case MAIN_STATE_RUN:

 user_hid_main();

 break;

 case MAIN_STATE_ERROR:

 break;

 }

 }

}

38

user_hid.c

static const unsigned char user_hid_report_descriptor[] =

{

 /* Add custom HID Report Descriptor */

};

/* Interrupt IN endpoint parameters */

static CLD_HID_Endpoint_Params user_interrupt_in_endpoint_params =

{

 .endpoint_number = 1,

 .max_packet_size_full_speed = 64,

 .polling_interval_full_speed = 1,

 .max_packet_size_high_speed = 64,

 .polling_interval_high_speed = 4, /* 1ms */

};

/* Optional Interrupt OUT endpoint parameters */

static CLD_HID_Endpoint_Params user_interrupt_out_endpoint_params =

{

 .endpoint_number = 1,

 .max_packet_size_full_speed = 64,

 .polling_interval_full_speed = 1,

 .max_packet_size_high_speed = 64,

 .polling_interval_high_speed = 4, /* 1ms */

};

/* CLD BF50x HID library initialization data. */

static CLD_BF70x_HID_Lib_Init_Params user_hid_init_params =

{

 .uart_num = CLD_UART_0,

 .uart_baud = 115200,

 .sclk0 = 100000000u,

 .fp_console_rx_byte = user_hid_console_rx_byte,

 .vendor_id = 0x064b,

 .product_id = 0x0001,

 .report_descriptor_size = sizeof(user_hid_report_descriptor),

 .p_report_descriptor = (unsigned char *)user_hid_report_descriptor,

 .p_interrupt_in_endpoint_params = &user_interrupt_in_endpoint_params,

 /* Optional Interrupt OUT endpoint if not being used set endpoint params and data

 received callback set to CLD_NULL */

 .p_interrupt_out_endpoint_params = &user_interrupt_out_endpoint_params,

 .fp_interrupt_out_data_received = user_interrupt_out_data_received,

 .usb_bus_max_power = 0,

 .device_descriptor_bcdDevice = 0x0100,

 /* USB string descriptors - Set to CLD_NULL if not required */

 .p_usb_string_manufacturer = "Analog Devices Inc",

 .p_usb_string_product = "Example HID",

 .p_usb_string_serial_number = CLD_NULL,

 .p_usb_string_configuration = CLD_NULL,

 .p_usb_string_interface = "BF707 HID Interface",

 .usb_string_language_id = 0x0409, /* English (US) language ID */

 .set_report_received = user_hid_set_report_received,

 .get_report_received = user_hid_get_report_received,

39

 .get_idle = user_hid_get_idle,

 .set_idle = user_hid_set_idle,

 .fp_cld_usb_event_callback = user_hid_usb_event_callback,

 .fp_cld_lib_status = user_audio_status,

};

typedef enum

{

 USER_HID_INIT_SUCCESS = 0,

 USER_HID_INIT_ONGOING,

 USER_HID_INIT_FAILED,

} User_HID_Init_Return_Code;

User_HID_Init_Return_Code user_hid_init (void)

{

 static unsigned char user_init_state = 0;

 CLD_RV cld_rv = CLD_ONGOING;

 User_HID_Init_Return_Code init_return_code = USER_HID_INIT_ONGOING;

 switch (user_init_state)

 {

 case 0:

 /* TODO: Configure a timer to generate an interrupt every 125

 microseconds, and call cld_time_125us_tick from interrupt. */

 /* TODO: Install USB and optionally the Console UART ISRs. */

 /* TODO: add any custom User firmware initialization */

 user_init_state++;

 break;

 case 1:

 /* Initialize the CLD BF50x HID Library */

 cld_rv = cld_bf70x_hid_lib_init(&user_hid_init_params);

 if (cld_rv == CLD_SUCCESS)

 {

 /* Connect to the USB Host */

 cld_lib_usb_connect();

 init_return_code = USER_HID_INIT_SUCCESS;

 }

 else if (cld_rv == CLD_FAIL)

 {

 init_return_code = USER_HID_INIT_FAILED;

 }

 else

 {

 init_return_code = USER_HID_INIT_ONGOING;

 }

 }

 return init_return_code;

}

void user_hid_main (void)

{

 cld_bf70x_hid_lib_main();

}

40

/* Function called when a Interrupt OUT packet is received */

static CLD_USB_Transfer_Request_Return_Type

 user_hid_interrupt_out_data_received(CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->num_bytes = /* TODO: Set number of Interrupt OUT bytes to

 transfer */

 p_transfer_data->p_data_buffer = /* TODO: address to store Interrupt OUT data */

 /* User Interrupt transfer complete callback function. */

 p_transfer_data->callback.usb_out_transfer_complete =

 user_hid_interrupt_out_transfer_done;

 p_transfer_params->transfer_aborted_callback = /* TODO: Set to User callback

 function or NULL */

 p_transfer_params->transfer_timeout_ms = /* TODO: Set interrupt OUT transfer

 timeout */

 /* TODO: Return how the Interrupt OUT transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* The function below is an example of the interrupt out transfer done callback

 specified in the CLD_USB_Transfer_Params structure. */

static CLD_USB_Data_Received_Return_Type user_hid_interrupt_out_transfer_done (void)

{

 /* TODO: Process the received Interrupt OUT transfer and return if the received

 data is good(CLD_USB_DATA_GOOD) or if there is an error

 (CLD_USB_DATA_BAD_STALL)*/

}

/* Function called when a Set Report request is received */

static CLD_USB_Transfer_Request_Return_Type user_hid_set_report_received

 (unsigned char report_id, CLD_USB_Transfer_Params * p_transfer_data)

{

 if (/* TODO: Check if report_id is valid */)

 {

 p_transfer_data->p_data_buffer = /* TODO: address to store Set Report data */

 p_transfer_data->callback.usb_out_transfer_complete =

 user_hid_set_report_transfer_complete;

 p_transfer_data->transfer_aborted_callback = /* TODO: Set to User callback

 function or NULL */

 return CLD_USB_TRANSFER_ACCEPT;

 }

 else

 {

 return CLD_USB_TRANSFER_STALL;

 }

}

/* Function called when The Set Report data is received */

static CLD_USB_Data_Received_Return_Type user_hid_set_report_transfer_complete(void)

{

 if (/* TODO: Check if Set Report data is valid */)

 {

 return CLD_USB_DATA_GOOD;

 }

 else

 {

 return CLD_USB_DATA_BAD_STALL;

 }

}

41

/* Function called when a Get Report request is received */

static CLD_USB_Transfer_Request_Return_Type user_hid_get_report_received

 (unsigned char report_id, CLD_USB_Transfer_Params * p_transfer_data)

{

 if (/* TODO: Check if report_id is valid */)

 {

 p_transfer_data->num_bytes = /* TODO: Set to size of requested Report ID */

 p_transfer_data->p_data_buffer = /* TODO: address to store Get Report data */

 p_transfer_data->callback.usb_in_transfer_complete =

 user_hid_get_report_transfer_complete;

 p_transfer_data->transfer_aborted_callback = /* TODO: Set to User callback

 function or NULL */

 return CLD_USB_TRANSFER_ACCEPT;

 }

 else

 {

 return CLD_USB_TRANSFER_STALL;

 }

}

/* Function called when a Get Report has been transmitted */

static void user_hid_get_report_transfer_complete (void)

{

 /* TODO: The Get Report data has been send to the Host, add any User

 functionality. */

}

CLD_USB_Data_Received_Return_Type user_hid_set_idle (unsigned char report_id,

 unsigned char duration)

{

 if (/* TODO: Check if report_id is valid */)

 {

 /* TODO: Save the requested duration and process it accordingly */

 return CLD_USB_DATA_GOOD;

 }

 else

 {

 return CLD_USB_DATA_BAD_STALL;

 }

}

CLD_USB_Data_Received_Return_Type user_hid_get_idle (unsigned char report_id,

 unsigned char * p_duration)

{

 if (/* TODO: Check if report_id is valid */)

 {

 p_duration = / TODO: Set to the current idle duration of the requested

 Report ID. */

 return CLD_USB_DATA_GOOD;

 }

 else

 {

 return CLD_USB_DATA_BAD_STALL;

 }

}

static void user_hid_usb_event_callback (CLD_USB_Event event)

{

 switch (event)

 {

42

 case CLD_USB_CABLE_CONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is connected. */

 break;

 case CLD_USB_CABLE_DISCONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is

 disconnected.*/

 break;

 case CLD_USB_ENUMERATED_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device has been

 enumerated.*/

 break;

 case CLD_USB_UN_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device USB Configuration

 is set to 0.*/

 break;

 case CLD_USB_BUS_RESET:

 /* TODO: Add any User firmware processed when a USB Bus Reset occurs. */

 break;

 }

}

static void user_hid_console_rx_byte (unsigned char byte)

{

 /* TODO: Add any User firmware to process data received by the CLD Console UART.*/

}

/* The following function will transmit the specified memory using

 the Interrupt IN endpoint. */

static void user_hid_transmit_interrupt_in_data (void)

{

 static CLD_USB_Transfer_Params transfer_params;

 transfer_params.num_bytes = /* TODO: Set number of Interrupt IN bytes */

 transfer_params.p_data_buffer = /* TODO: address Interrupt IN data */

 transfer_params.callback.usb_in_transfer_complete = /* TODO: Set to User callback

 function or NULL */;

 transfer_params.callback.transfer_aborted_callback = /* TODO: Set to User callback

 function or NULL */;

 transfer_params.transfer_timeout_ms = /* TODO: Set interrupt OUT transfer

 timeout */

 if (cld_bf70x_hid_lib_transmit_interrupt_in_data(&transfer_params) ==

 CLD_USB_TRANSMIT_SUCCESSFUL)

 {

 /* Interrupt IN transfer initiated successfully */

 }

 else

 {

 /* Interrupt IN transfer was unsuccessful */

 }

}

static void user_cld_lib_status (unsigned short status_code, void * p_additional_data,

 unsigned short additional_data_size)

{

 /* TODO: Process the library status if needed. The status can also be decoded to

 a USB readable string using cld_lib_status_decode as shown below: */

 char * p_str = cld_lib_status_decode(status_code, p_additional_data,

 additional_data_size);

}

	Disclaimer
	Introduction
	USB Background
	CLD BF70x HID Library USB Enumeration Flow Chart
	CLD BF70x HID Library Interrupt OUT Flow Chart
	CLD BF70x HID Library Interrupt IN Flow Chart

	HID Background
	HID Interrupt IN Endpoint
	HID Control Endpoint Requests
	Set Report (required)
	CLD BF70x HID Library Set Report Flow Chart

	Get Report (optional)
	CLD BF70x HID Library Get Report Flow Chart

	Set Idle (optional)
	CLD BF70x HID Library Set Idle Flow Chart

	Get Idle (optional)
	CLD BF70x HID Library Get Idle Flow Chart

	Optional HID Interrupt OUT Endpoint

	Dependencies
	Memory Footprint
	CLD BF70x HID Library Scope and Intended Use
	CLD HID Mouse Example v2.0 Description
	CLD BF70x HID Library API
	cld_bf70x_hid_lib_init
	Arguments
	Return Value
	Details

	cld_bf70x_hid_lib_main
	Arguments
	Return Value
	Details

	cld_bf70x_hid_lib_transmit_interrupt_in_data
	Arguments
	Return Value
	Details

	cld_bf70x_hid_lib_resume_paused_interrupt_out_transfer
	Arguments
	Return Value
	Details

	cld_lib_usb_connect
	Arguments
	Return Value
	Details

	cld_lib_usb_disconnect
	Arguments
	Return Value
	Details

	cld_time_125us_tick
	Arguments
	Return Value
	Details

	cld_usb_isr_callback
	Arguments
	Return Value
	Details

	cld_console_tx_isr_callback
	Arguments
	Return Value
	Details

	cld_console_rx_isr_callback
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_time_get_125us
	Arguments
	Return Value
	Details

	cld_time_passed_125us
	Arguments
	Return Value
	Details

	cld_console
	Arguments
	Return Value
	Details

	cld_lib_status_decode
	Arguments
	Return Value
	Details

	Using the ADSP-BF707 Ez-Board
	Connections:
	Note about using UART0 and the FTDI USB to Serial Converter

	Adding the CLD BF70x HID Library to an Existing CrossCore Embedded Studio Project
	User Firmware Code Snippets
	main.c
	user_hid.c

